Author:
Mudassir Mumajjed Ul,Baig M. Iram
Abstract
Multihomed smart gas meters are Internet of Things (IoT) devices that transmit information wirelessly to a cloud or remote database via multiple network paths. The information is utilized by the smart gas grid for accurate load forecasting and several other important tasks. With the rapid growth in such smart IoT networks and data rates, reliable transport layer protocols with efficient congestion control algorithms are required. The small Transmission Control Protocol/Internet Protocol (TCP/IP) stacks designed for IoT devices still lack efficient congestion control schemes. Multipath transmission control protocol (MPTCP) based congestion control algorithms are among the recent research topics. Many coupled and uncoupled congestion control algorithms have been proposed by researchers. The default congestion control algorithm for MPTCP is coupled congestion control by using the linked-increases algorithm (LIA). In battery powered smart meters, packet retransmissions consume extra power and low goodput results in poor system performance. In this study, we propose a modified Fast-Vegas-LIA hybrid congestion control algorithm (MFVL HCCA) for MPTCP by considering the requirements of a smart gas grid. Our novel algorithm operates in uncoupled congestion control mode as long as there is no shared bottleneck and switches to coupled congestion control mode otherwise. We have presented the details of our proposed model and compared the simulation results with the default coupled congestion control for MPTCP. Our proposed algorithm in uncoupled mode shows a decrease in packet loss up to 50% and increase in average goodput up to 30%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献