CMT-SCTP and MPTCP Multipath Transport Protocols: A Comprehensive Review

Author:

Tomar Parul,Kumar GyanendraORCID,Verma Lal Pratap,Sharma Varun Kumar,Kanellopoulos Dimitris,Rawat Sur SinghORCID,Alotaibi YouseefORCID

Abstract

A huge amount of generated data is regularly exploding into the network by the users through smartphones, laptops, tablets, self-configured Internet-of-things (IoT) devices, and machine-to-machine (M2M) communication. In such a situation, satisfying critical quality-of-service (QoS) requirements (e.g., throughput, latency, bandwidth, and reliability) is a large challenge as a vast amount of data travels into the network. Nowadays, strict QoS requirements must be satisfied efficiently in many networked multimedia applications when intelligent multi-homed devices are used. Such devices support the concept of multi-homing. To be precise, they have multiple network interfaces that aim to connect and communicate concurrently with different networking technologies. Therefore, many multipath transport protocols are provided to multi-homed devices, which aim (1) to take advantage of several network paths at the transport layer (Layer-4) and (2) to meet the strict QoS requirements for providing low network latency, higher data rates, and increased reliability. To this end, this survey first presents the challenges/problems for supporting multipath transmission with possible solutions. Then, it reviews recent research efforts related to the concurrent multipath transmission (CMT) protocol and the multipath transmission control protocol (MPTCP). It reviews the latest research efforts by considering (1) how a multipath transport protocol operates (i.e., its functionality); (2) in what type of network; (3) what path characteristics it should consider; and (4) how it addresses various design challenges. Furthermore, it presents some lessons learned and discusses open research issues in multipath transport protocols.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving QoS in mobile multimedia streaming with SCTP-PQ;Acta Polytechnica;2023-11-07

2. Energy-Aware MPTCP Scheduling in Heterogeneous Wireless Networks Using Multi-Agent Deep Reinforcement Learning Techniques;Electronics;2023-11-01

3. NEMO: Building the Next Generation Meta Operating System;Proceedings of the 3rd Eclipse Security, AI, Architecture and Modelling Conference on Cloud to Edge Continuum;2023-10-17

4. An Experimental Study of Concurrent Multipath Transmission Protocol in Lossy and Asymmetric Network Environment;2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET);2023-09-14

5. Enhancing SCTP Performance through the Selection of Appropriate Retransmission Policies;VFAST Transactions on Software Engineering;2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3