Abstract
High power electronics using wide bandgap materials are maturing rapidly, and significant market growth is expected in a near future. Ultra wide bandgap materials, which have an even larger bandgap than GaN (3.4 eV), represent an attractive choice of materials to further push the performance limits of power devices. In this work, we report on the fabrication of AlN/AlGaN/AlN high-electron mobility transistors (HEMTs) using 50% Al-content on the AlGaN channel, which has a much wider bandgap than the commonly used GaN channel. The structure was grown by metalorganic chemical vapor deposition (MOCVD) on AlN/sapphire templates. A buffer breakdown field as high as 5.5 MV/cm was reported for short contact distances. Furthermore, transistors have been successfully fabricated on this heterostructure, with low leakage current and low on-resistance. A remarkable three-terminal breakdown voltage above 4 kV with an off-state leakage current below 1 μA/mm was achieved. A regrown ohmic contact was used to reduce the source/drain ohmic contact resistance, yielding a drain current density of about 0.1 A/mm.
Funder
French National grant
GaNeX
Horizon 2020 Framework Programme
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献