Economic and Ecological Design of Hybrid Renewable Energy Systems Based on a Developed IWO/BSA Algorithm

Author:

Kharrich MohammedORCID,Kamel SalahORCID,Ellaia Rachid,Akherraz Mohammed,Alghamdi Ali S.ORCID,Abdel-Akher MamdouhORCID,Eid Ahmad,Mosaad Mohamed I.ORCID

Abstract

In this paper, an optimal design of a microgrid including four houses in Dakhla city (Morocco) is proposed. To make this study comprehensive and applicable to any hybrid system, each house has a different configuration of renewable energies. The configurations of these four houses are PV/wind turbine (WT)/biomass/battery, PV/biomass, PV/diesel/battery, and WT/diesel/battery systems. The comparison factor among these configurations is the cost of energy (COE), comparative index, where the load is different in the four houses. Otherwise, the main objective function is the minimization of the net present cost (NPC), subject to several operating constraints, the power loss, the power generated by the renewable sources (renewable fraction), and the availability. This objective function is achieved using a developed optimization algorithm. The main contribution of this paper is to propose and apply a new optimization technique for the optimal design of a microgrid considering different economic and ecological aspects. The developed optimization algorithm is based on the hybridization of two metaheuristic algorithms, the invasive weed optimization (IWO) and backtracking search algorithm (BSA), with the aim of collecting the advantages of both. The proposed hybrid optimization algorithm (IWO/BSA) is compared with the original two optimization methods (IWO and BSA) as well as other well-known optimization methods. The results indicate that PV/biomass and PV/diesel/battery systems have the best energy cost using the proposed IWO/BSA algorithm with 0.1184 $/kWh and 0.1354 $/kWh, respectively. The best system based on its LCOE factor is the PV/biomass which represents an NPC of 124,689 $, the size of this system is 349.55 m2 of PV area and the capacity of the biomass is 18.99 ton/year. The PV/diesel/battery option has also good results, with a system NPC of 142,233 $, the size of this system is about 391.39 m2 of PV area, rated power of diesel generator about 0.55 kW, and a battery capacity of 12.97 kWh. Otherwise, the proposed IWO/BSA has the best convergence in all cases. It is observed that the wind turbine generates more dumped power, and the PV system is highly suitable for the studied area.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3