Renewable Energy-Based DC Microgrid with Hybrid Energy Management System Supporting Electric Vehicle Charging System

Author:

Mohan Harin M.1ORCID,Dash Santanu Kumar2ORCID

Affiliation:

1. School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

2. TIFAC-CORE, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

Growing Electric vehicle (EV) ownership leads to an increase in charging stations, which raises load demand and causes grid outages during peak hours. Microgrids can significantly resolve these issues in the electrical distribution system by implementing an effective energy management approach. The suggested hybrid optimization approach aims to provide constant power regardless of the generation discrepancy and should prevent the early deterioration of the storage devices. This study suggests using a dynamic control system based on the Fuzzy-Sparrow Search Algorithm (SSA) to provide a reliable power balance for microgrid (MG) operation. The proposed DC microgrid integrating renewable energy sources (RES) and battery storage system (BSS) as sources are designed and evaluated, and the findings are further validated using MATLAB Simulink simulation. In comparing the hybrid SSA strategy with the most widely used Particle Swarm Optimization (PSO)-based power management, it was observed that the hybrid SSA approach was superior in terms of convergence speed and stability. The effectiveness of the given energy management system is evaluated using two distinct modes, the variation of solar irradiation and the variation of battery state of charge, ensuring the microgrid’s cost-effective operation. The enhanced response characteristics indicate that the Fuzzy-SSA can optimise power management of the DC microgrid, making better use of energy resources. These results show the relevance of algorithm configuration for cost-effective power management in DC microgrids, as it saves approximately 7.776% in electricity expenses over a year compared to PSO.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3