Iterative Self-Tuning Minimum Variance Control of a Nonlinear Autonomous Underwater Vehicle Maneuvering Model

Author:

Tomas-Rodríguez Maria,Revestido Herrero Elías,Velasco Francisco J.

Abstract

This paper addresses the problem of control design for a nonlinear maneuvering model of an autonomous underwater vehicle. The control algorithm is based on an iteration technique that approximates the original nonlinear model by a sequence of linear time-varying equations equivalent to the original nonlinear problem and a self-tuning control method so that the controller is designed at each time point on the interval for trajectory tracking and heading angle control. This work makes use of self-tuning minimum variance principles. The benefit of this approach is that the nonlinearities and couplings of the system are preserved, unlike in the cases of control design based on linearized systems, reducing in this manner the uncertainty in the model and increasing the robustness of the controller. The simulations here presented use a torpedo-shaped underwater vehicle model and show the good performance of the controller and accurate tracking for certain maneuvering cases.

Funder

The Regional Ministry of Universities, Equality, Culture and Sports of the Government of Can-tabria has supported this work through the ControlFond project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3