Operation Optimization of Regional Integrated Energy System Considering the Responsibility of Renewable Energy Consumption and Carbon Emission Trading

Author:

Li Feng,Lu Shirong,Cao Chunwei,Feng Jiang

Abstract

To “bring carbon emissions to a peak by 2030 and to be carbon-neutral by 2060”, the role of renewable energy consumption and carbon emission trading are promoted. As an important energy consumer of regional energy system, it is necessary for integrated energy system to ensure the low-carbon economic operation of the system. Combined with the responsibility of renewable energy consumption, green certificate trading mechanism, carbon emission rights trading, and China Certified Emission Reduction (CCER), a regional integrated energy system operation optimization model was proposed. The model aims to minimize the total cost of the system, which included with electric bus, thermal bus, and cold bus. Setting different scenarios for the given example, the results show that the optimized model could effectively reduce the operating costs of the system. Moreover, the results also provide an effective reference for the system’s economic and low-carbon operation.

Funder

Chongqing science and Technology Bureau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference11 articles.

1. Modeling and integration of flexible demand in heat and electricity integrated energy system;Shao;IEEE Trans. Sustain. Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3