Abstract
This paper presents a fully integrated 64-channel neural recording system for local field potential and action potential. It mainly includes 64 low-noise amplifiers, 64 programmable amplifiers and filters, 9 switched-capacitor (SC) amplifiers, and a 10-bit successive approximation register analogue-to-digital converter (SAR ADC). Two innovations have been proposed. First, a two-stage amplifier with high-gain, rail-to-rail input and output, and dynamic current enhancement improves the speed of SC amplifiers. The second is a clock logic that can be used to align the switching clock of 64 channels with the sampling clock of ADC. Implemented in an SMIC 0.18 μm Complementary Metal Oxide Semiconductor (CMOS) process, the 64-channel system chip has a die area of 4 × 4 mm2 and is packaged in a QFN−88 of 10 × 10 mm2. Supplied by 1.8 V, the total power is about 8.28 mW. For each channel, rail-to-rail electrode DC offset can be rejected, the referred-to-input noise within 1 Hz–10 kHz is about 5.5 μVrms, the common-mode rejection ratio at 50 Hz is about 69 dB, and the output total harmonic distortion is 0.53%. Measurement results also show that multiple neural signals are able to be simultaneously recorded.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献