Dataset Generation for Development of Multi-Node Cyber Threat Detection Systems

Author:

Bieniasz JędrzejORCID,Szczypiorski KrzysztofORCID

Abstract

This paper presents a new approach to generate datasets for cyber threat research in a multi-node system. For this purpose, the proof-of-concept of such a system is implemented. The system will be used to collect unique datasets with examples of information hiding techniques. These techniques are not present in publicly available cyber threat detection datasets, while the cyber threats that use them represent an emerging cyber defense challenge worldwide. The network data were collected thanks to the development of a dedicated application that automatically generates random network configurations and runs scenarios of information hiding techniques. The generated datasets were used in the data-driven research workflow for cyber threat detection, including the generation of data representations (network flows), feature selection based on correlations, data augmentation of training datasets, and preparation of machine learning classifiers based on Random Forest and Multilayer Perceptron architectures. The presented results show the usefulness and correctness of the design process to detect information hiding techniques. The challenges and research directions to detect cyber deception methods are discussed in general in the paper.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference47 articles.

1. Artificially Intelligent Electronic Money

2. Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains;Hutchins;Lead. Issues Inf. Warf. Secur. Res.,2011

3. https://attack.mitre.org/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3