Design and Implementation of Multi-Cyber Range for Cyber Training and Testing

Author:

Park MoosungORCID,Lee Hyunjin,Kim Yonghyun,Kim KookjinORCID,Shin DongkyooORCID

Abstract

It is essential to build a practical environment of the training/test site for cyber training and weapon system test evaluation. In a military environment, cyber training sites should be continuously developed according to the characteristics of the military. Weapons with cyber security capabilities should be deployed through cyber security certification. Recently, each military has been building its own cyber range that simulates its battlefield environment. However, since the actual battlefield is an integrated operation environment, the cyber range built does not reflect the integrated battlefield environment that is interconnected. This paper proposes a configuration plan and operation function to construct a multi-cyber range reflecting the characteristics of each military to overcome this situation. In order to test the multi-cyber range, which has scenario authoring and operation functions, and can faithfully reflect reality, the impact of DDoS attacks is tested. It is a key to real-world mission-based test evaluation to ensure interoperability between military systems. As a result of the experiment, it was concluded that if a DDoS attack occurs due to the infiltration of malicious code into the military network, it may have a serious impact on securing message interoperability between systems in the military network. Cyber range construction technology is being developed not only in the military, but also in school education and businesses. The proposed technology can also be applied to the construction of cyber ranges in industries where cyber-physical systems are emphasized. In addition, it is a field that is continuously developing with the development of technology, such as being applied as an experimental site for learning machine learning systems.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3