Using a Two-Stage Method to Reject False Loop Closures and Improve the Accuracy of Collaborative SLAM Systems

Author:

Zhang XiaoguoORCID,Zhang ZihanORCID,Wang Qing,Yang Yuan

Abstract

Loop-closure detection is an essential means to reduce accumulated errors of simultaneous localization and mapping (SLAM) systems. However, even false positive loop closures could seriously interfere and even corrupt the back-end optimization process. For a collaborative SLAM system that generally uses both intra-robot and inter-robot loop closures to optimize the pose graph, it is a tough job to reject those false positive loop closures without a reliable a priori knowledge of the relative pose transformation between robots. Aiming at this solving problem, this paper proposes a two-stage false positive loop-closure rejection method based on three types of consistency checks. Firstly, a multi-robot pose-graph optimization model is given which transforms the multi-robot pose optimization problem into a maximum likelihood estimation model. Then, the principle of the false positive loop-closure rejection method based on χ2 test is proposed, in which clustering is used to reject those intra-robot false loop-closures in the first step, and a largest mutually consistent loop-based χ2 test is constructed to reject inter-robot false loop closures in the second step. Finally, an open dataset and synthetic data are used to evaluate the performance of the algorithms. The experimental results demonstrate that our method improves the accuracy and robustness of the back-end pose-graph optimization with a strong ability to reject false positive loop closures, and it is not sensitive to the initial pose at the same time. In the Computer Science and Artificial Intelligence Lab (CSAIL) dataset, the absolute position error is reduced by 55.37% compared to the dynamic scaling covariance method, and the absolute rotation error is reduced by 77.27%; in the city10,000 synthetic dataset, the absolute position error is reduced by 89.37% compared to the pairwise consistency maximization (PCM) and the absolute rotation error is reduced by 97.9%.

Funder

National Key Technologies R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Collaborative visual SLAM for multiple agents:A brief survey

2. Collaborative SLAM and AR-guided navigation for floor layout inspection

3. A Collaborative Visual SLAM Framework for Service Robots;Ouyang;arXiv,2021

4. Bags of Binary Words for Fast Place Recognition in Image Sequences

5. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM;Campos;arXiv,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3