Combining Deep Learning and Robust Estimation for Outlier-Resilient Underwater Visual Graph SLAM

Author:

Burguera AntoniORCID,Bonin-Font FranciscoORCID,Font Eric GuerreroORCID,Torres Antoni Martorell

Abstract

Visual Loop Detection (VLD) is a core component of any Visual Simultaneous Localization and Mapping (SLAM) system, and its goal is to determine if the robot has returned to a previously visited region by comparing images obtained at different time steps. This paper presents a new approach to visual Graph-SLAM for underwater robots that goes one step forward the current techniques. The proposal, which centers its attention on designing a robust VLD algorithm aimed at reducing the amount of false loops that enter into the pose graph optimizer, operates in three steps. In the first step, an easily trainable Neural Network performs a fast selection of image pairs that are likely to close loops. The second step carefully confirms or rejects these candidate loops by means of a robust image matcher. During the third step, all the loops accepted in the second step are subject to a geometric consistency verification process, being rejected those that do not fit with it. The accepted loops are then used to feed a Graph-SLAM algorithm. The advantages of this approach are twofold. First, the robustness in front of wrong loop detection. Second, the computational efficiency since each step operates only on the loops accepted in the previous one. This makes online usage of this VLD algorithm possible. Results of experiments with semi-synthetic data and real data obtained with an autonomous robot in several marine resorts of the Balearic Islands, support the validity and suitability of the approach to be applied in further field campaigns.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3