Nonintrusive Load Monitoring Based on Complementary Features of Spurious Emissions

Author:

Su DonglinORCID,Shi Qian,Xu Hui,Wang Wang

Abstract

In this paper, a novel method that utilizes the fractional correlation-based algorithm and the B-spline curve fitting-based algorithm is proposed to extract the complementary features for detecting the operating states of appliances. The identification of appliance operating states is one of the key parts for nonintrusive load monitoring (NILM). Considering the individual spurious emissions generated because of nonlinear components in each electronic device, the spurious emissions from the power cord can be picked up to solve the problem of data storage. Five types of common household appliances are considered in this study. The fractional correlation-based algorithm and B-spline curve fitting-based algorithm are used to extract two groups of complementary features from the spurious emissions of those five types of appliances. The experimental results show that the feature vectors extracted using the proposed method are obviously distinguishable. In addition, the features extracted show a good long-time stability, which is verified through a five-day experiment. Finally, based on support vector machine (SVM) and Dempster–Shafer (D-S) evidence theory, the identification accuracy reaches 85.5% using a combining classifier incorporated with the features extracted from the proposed methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load Matching Method Based on Mixed-Integer Programming;2024 5th International Conference on Computer Engineering and Application (ICCEA);2024-04-12

2. A Few-Shot Learning Method for Nonintrusive Load Monitoring With VI Trajectory Features;IEEE Sensors Journal;2024-04-01

3. Load Decomposition Method Based on Improved EEMD-Person-PCA;2023 5th International Conference on Electrical Engineering and Control Technologies (CEECT);2023-12-15

4. A Rapid Monitoring Method for Natural Gas Safety Monitoring;International Journal of Electronics and Telecommunications;2023-07-26

5. Research on Non-Intrusive Load Recognition Method Based on Improved Equilibrium Optimizer and SVM Model;Electronics;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3