Affiliation:
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
2. Low Voltage Apparatus Technology Research Center of Zhejiang, Wenzhou University, Wenzhou 325027, China
Abstract
Non-intrusive load monitoring is the main trend of green energy-saving electricity consumption at present, and load identification is a core part of non-invasive load monitoring. A support vector machine (SVM) is commonly used in load recognition, but there are still some problems in the parameter selection, resulting in a low recognition accuracy. Therefore, an improved equilibrium optimizer (IEO) is proposed to optimize the parameters of the SVM. Firstly, household appliance data are collected, and load features are extracted to build a self-test dataset; and secondly, Bernoulli chaotic mapping, adaptive factors and the Levy flight were introduced to improve the traditional equilibrium optimizer algorithm. The performance of the IEO algorithm is validated on test functions, and the SVM is optimized using the IEO algorithm to establish the IEO-SVM load identification model. Finally, the recognition effect of the IEO-SVM model is verified based on the self-test dataset and the public dataset. The results show that the IEO algorithm has good optimization accuracy and convergence speed on the test function. The IEO-SVM load recognition model achieves an accuracy of 99.428% on the self-test dataset and 100% accuracy on the public dataset, and the classification performance is significantly better than other classification algorithms, which can complete the load recognition task well.
Funder
Key Research and Development Program of Zhejiang Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献