Abstract
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献