Publisher
Springer Nature Singapore
Reference11 articles.
1. Karabiber, O.A., Xydis, G.: Electricity price forecasting in the Danish day-ahead market using the TBATS, ANN and ARIMA methods. Energies 12(5), 928 (2019)
2. Girish, G.P.: Spot electricity price forecasting in Indian electricity market using autoregressive-GARCH models. Energ. Strat. Rev. 11, 52–57 (2016)
3. Syah, R., Davarpanah, A., Elveny, M., Karmaker, A.K., Nasution, M.K., Hossain, M.A.: Forecasting daily electricity price by hybrid model of fractional wavelet transform, feature selection, support vector machine and optimization algorithm. Electronics 10(18), 2214 (2021)
4. Zhao, P., Dai, Y.: Power load forecasting of SVM based on real-time price and weighted grey relational projection algorithm. Power Syst. Technol 44(04), 1325–1332 (2020)
5. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 13(2), 391 (2020)