Solar Active Region Detection Using Deep Learning

Author:

Quan Lin,Xu LongORCID,Li Ling,Wang Huaning,Huang Xin

Abstract

Solar eruptive events could affect radio communication, global positioning systems, and some high-tech equipment in space. Active regions on the Sun are the main source regions of solar eruptive events. Therefore, the automatic detection of active regions is important not only for routine observation, but also for the solar activity forecast. At present, active regions are manually or automatically extracted by using traditional image processing techniques. Because active regions dynamically evolve, it is not easy to design a suitable feature extractor. In this paper, we first overview the commonly used methods for active region detection currently. Then, two representative object detection models, faster R-CNN and YOLO V3, are employed to learn the characteristics of active regions, and finally establish a deep learning–based detection model of active regions. The performance evaluation demonstrates that the high accuracy of active region detection is achieved by both the two models. In addition, YOLO V3 is 4% and 1% better than faster R-CNN in terms of true positive (TP) and true negative (TN) indexes, respectively; meanwhile, the former is eight times faster than the latter.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3