A Regularized Procedure to Generate a Deep Learning Model for Topology Optimization of Electromagnetic Devices

Author:

Tucci MauroORCID,Barmada SamiORCID,Formisano AlessandroORCID,Thomopulos DimitriORCID

Abstract

The use of behavioral models based on deep learning (DL) to accelerate electromagnetic field computations has recently been proposed to solve complex electromagnetic problems. Such problems usually require time-consuming numerical analysis, while DL allows achieving the topologically optimized design of electromagnetic devices using desktop class computers and reasonable computation times. An unparametrized bitmap representation of the geometries to be optimized, which is a highly desirable feature needed to discover completely new solutions, is perfectly managed by DL models. On the other hand, optimization algorithms do not easily cope with high dimensional input data, particularly because it is difficult to enforce the searched solutions as feasible and make them belong to expected manifolds. In this work, we propose the use of a variational autoencoder as a data regularization/augmentation tool in the context of topology optimization. The optimization was carried out using a gradient descent algorithm, and the DL neural network was used as a surrogate model to accelerate the resolution of single trial cases in the due course of optimization. The variational autoencoder and the surrogate model were simultaneously trained in a multi-model custom training loop that minimizes total loss—which is the combination of the two models’ losses. In this paper, using the TEAM 25 problem (a benchmark problem for the assessment of electromagnetic numerical field analysis) as a test bench, we will provide a comparison between the computational times and design quality for a “classical” approach and the DL-based approach. Preliminary results show that the variational autoencoder manages regularizing the resolution process and transforms a constrained optimization into an unconstrained one, improving both the quality of the final solution and the performance of the resolution process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3