Survey of IoT for Developing Countries: Performance Analysis of LoRaWAN and Cellular NB-IoT Networks

Author:

Ugwuanyi StephenORCID,Paul GreigORCID,Irvine JamesORCID

Abstract

Recently, Internet of Things (IoT) deployments have shown their potential for aiding the realisation of the Sustainable Development Goals (SDGs). Concerns regarding how the IoT can specifically drive SDGs 6, 11 and 9 in developing countries have been raised with respect to the challenges of deploying licensed and unlicensed low-power wide area network (LPWAN) IoT technologies and their opportunities for IoT consumers and service providers. With IoT infrastructure and protocols being ubiquitous and each being proposed for different SDGs, we review and compare the various performance characteristics of LoRaWAN and NB-IoT networks. From the performance analysis of our networks, NB-IoT, one of the standardised promising cellular IoT solutions for developing countries, is more expensive and less energy-efficient than LoRaWAN. Utilising the same user equipment (UE), NB-IoT consumed an excess of 2 mAh of power for joining the network and 1.7 mAh more for a 44-byte uplink message compared to LoRaWAN. However, NB-IoT has the advantage of reliably and securely delivering higher network connection capacity in IoT use cases, leveraging existing cellular infrastructure. With a maximum throughput of 264 bps at 837 ms measured latency, NB-IoT outperformed LoRaWAN and proved robust for machine-type communications. These findings will help IoT consumers and service providers understand the performance differences and deployment challenges of NB-IoT and LoRaWAN and establish new research directions to tackle IoT issues in developing countries. With Nigeria as a case study, for consumers and organisations at a crossroads in their long-term deployment decisions, the proposed LPWAN integrated architecture is an example of the deployment opportunities for consumer and industrial IoT applications in developing countries.

Funder

Petroleum Technology Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On outage and path loss analysis using spectrum sensing of LoRa WAN in IoT communication at L band parameters;Sādhanā;2024-08-08

2. A Comprehensive Assessment of LoRaWAN and NB-IoT Performance Metrics Under Varied Payload Data Sizes;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

3. Examining the Role of IoT and Cloud Computing in Achieving Sustainable Development Goals;Advances in Environmental Engineering and Green Technologies;2024-06-07

4. Evaluating NB-IoT within LTE Networks for Enhanced IoT Connectivity;2024 35th Conference of Open Innovations Association (FRUCT);2024-04-24

5. UWB Cone Antenna with Azimuthal Symmetry for IoT Applications;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3