A Novel Adaptive Battery-Aware Algorithm for Data Transmission in IoT-Based Healthcare Applications

Author:

Magsi HinaORCID,Sodhro Ali HassanORCID,Al-Rakhami Mabrook S.ORCID,Zahid Noman,Pirbhulal Sandeep,Wang LeiORCID

Abstract

The internet of things (IoT) comprises various sensor nodes for monitoring physiological signals, for instance, electrocardiogram (ECG), electroencephalogram (EEG), blood pressure, and temperature, etc., with various emerging technologies such as Wi-Fi, Bluetooth and cellular networks. The IoT for medical healthcare applications forms the internet of medical things (IoMT), which comprises multiple resource-restricted wearable devices for health monitoring due to heterogeneous technological trends. The main challenge for IoMT is the energy drain and battery charge consumption in the tiny sensor devices. The non-linear behavior of the battery uses less charge; additionally, an idle time is introduced for optimizing the charge and battery lifetime, and hence the efficient recovery mechanism. The contribution of this paper is three-fold. First, a novel adaptive battery-aware algorithm (ABA) is proposed, which utilizes the charges up to its maximum limit and recovers those charges that remain unused. The proposed ABA adopts this recovery effect for enhancing energy efficiency, battery lifetime and throughput. Secondly, we propose a novel framework for IoMT based pervasive healthcare. Thirdly, we test and implement the proposed ABA and framework in a hardware platform for energy efficiency and longer battery lifetime in the IoMT. Furthermore, the transition of states is modeled by the deterministic mealy finite state machine. The Convex optimization tool in MATLAB is adopted and the proposed ABA is compared with other conventional methods such as battery recovery lifetime enhancement (BRLE). Finally, the proposed ABA enhances the energy efficiency, battery lifetime, and reliability for intelligent pervasive healthcare.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks

2. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications

3. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy;Rosewater,2018

4. Telemedicine and facility design;Hume;Health Facil. Manag.,2016

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3