Versatile Voltage-Mode Biquadratic Filter and Quadrature Oscillator Using Four OTAs and Two Grounded Capacitors

Author:

Wang San-Fu,Chen Hua-PinORCID,Ku Yitsen,Lee Chia-Ling

Abstract

This article presents a versatile voltage-mode (VM) biquad filter with independently electronic tunability. The proposed structure using one dual-output operational transconductance amplifier, three single-output operational transconductance amplifiers (OTAs) and two grounded capacitors was explored to derive a new VM quadrature oscillator with the independent control of the oscillation frequency and the oscillation condition. The proposed versatile VM biquad filter achieves nearly all of the main advantages: (i) simultaneous realizations of band-reject, band-pass, and low-pass from the same architecture, (ii) multiple-input and multiple-output functions, (iii) independent electronic adjustability of quality factor and resonant angular frequency, (iv) no resistor needed, (v) all input terminals with cascade functions, (vi) no additional inverting amplifier for input signals, (vii) using only grounded capacitors, and (viii) easy to implement a VM quadrature oscillator with independent electronically controlled oscillation frequency and oscillation condition. The proposed versatile VM biquad filter employs only four OTAs and two grounded capacitors. The active components of the proposed VM biquad filter are one less than that of recent reports. The proposed circuit also brings versatility and simplicity to the design of VM biquad filters and VM quadrature oscillators. Filters and oscillators with less active and passive components have the advantages of low cost, low power dissipation, low circuit complexity, and low noise. Commercially available integrated circuit LT1228 and discrete components can be used to implement the proposed OTA-based circuits. The simulation and experiment results validated the theoretical analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3