Current/Voltage Controlled Quadrature Sinusoidal Oscillators for Phase Sensitive Detection Using Commercially Available IC

Author:

Jaikla WinaiORCID,Adhan Suchin,Suwanjan Peerawut,Kumngern Montree

Abstract

This paper presents the quadrature sinusoidal oscillators for a phase sensitive detection (PSD) system. The proposed oscillators are design by using the commercially available ICs (LT1228). The core oscillator consists of three LT1228s: two grounded capacitors and one resistor. By adding four resistors without the requirement of additional active devices, the amplitudes of two quadrature waveforms become adjustable. The quadrature output nodes are of low impedance, which can be connected to the impedance sensor or other circuits in a phase sensitive detection system without the need of buffer devices. The amplitudes of the quadrature waveform are equal during the frequency of oscillation (FO) tuning. The frequency of oscillation is electronically and linearly controlled by bias current or voltage without affecting the condition of oscillation (CO). Furthermore, the condition of oscillation is electronically controlled without affecting the frequency of oscillation. The performances of the proposed oscillators are experimentally tested with ±5 voltage power supplies. The frequency of the proposed sinusoidal oscillator can be tuned from 8.21 kHz to 1117.51 kHz. The relative frequency error is lower than 3.12% and the relative phase error is lower than 2.96%. The total harmonic distortion is lower than −38 dB (1.259%). The voltage gain of the quadrature waveforms can be tuned from 1.97 to 15.92. The measurement results demonstrate that the proposed oscillators work in a wide frequency range and it is a suitable choice for an instrument-off-the-shelf device

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analogue Computation Converter for Nonhomogeneous Second-Order Linear Ordinary Differential Equation;Computation;2024-08-20

2. Electronically Tunable Three-Input Single-Output Fully Differential Universal Filter Employing Commercially Available ICs;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

3. New explicit-current-output SRCO using a single CFOA and all grounded capacitors;AEU - International Journal of Electronics and Communications;2024-05

4. On the realization of an amplifier‐tuned low/high frequency family of oscillators;International Journal of Circuit Theory and Applications;2024-04

5. Electronically Tunable High Pass Filter-Based MSO Employing VD-DIBAs;2024 12th International Electrical Engineering Congress (iEECON);2024-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3