Real Time-Based under Frequency Control and Energy Management of Microgrids

Author:

Worku Muhammed Y.,Hassan Mohamed A.ORCID,Abido Mohamed A.ORCID

Abstract

In this paper, an efficient under frequency control and the energy management of a distributed energy resources (DERs)-based microgrid is presented. The microgrid is composed of a photovoltaic (PV), double-fed induction generator (DFIG)-based wind and diesel generator with critical and non-critical loads. The system model and the control strategy are developed in a real time digital simulator (RTDS). The coordination and power management of the DERs in both grid-connected and islanded operation modes are implemented. During power imbalances and frequency fluctuations caused by fault or islanding, an advanced automatic load shedding control is implemented to regulate and maintain the microgrid frequency at its rated value. One distinct feature implemented for the load shedding operation is that highly unbalanced critical loads are connected to the microgrid. The diesel generator provides the required inertia in the islanded mode to maintain the microgrid rated frequency by operating in the isochronous mode. The International Council on Large Electric Systems (CIGRE) medium voltage (MV) test bench system is used to implement the DERs and their controller. The proposed control approach has potential applications for the complete operation of microgrids by properly controlling the power, voltage and frequency in both grid-connected and island modes. The real time digital simulator results verify the effectiveness and superiority of the proposed control scheme in grid connected, island and fault conditions.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3