Abstract
Coronavirus (COVID-19) is a new virus of viral pneumonia. It can outbreak in the world through person-to-person transmission. Although several medical companies provide cooperative monitoring healthcare systems, these solutions lack offering of the end-to-end management of the disease. The main objective of the proposed framework is to bridge the current gap between current technologies and healthcare systems. The wireless body area network, cloud computing, fog computing, and clinical decision support system are integrated to provide a comprehensive and complete model for disease detection and monitoring. By monitoring a person with COVID-19 in real time, physicians can guide patients with the right decisions. The proposed framework has three main layers (i.e., a patient layer, cloud layer, and hospital layer). In the patient layer, the patient is tracked through a set of wearable sensors and a mobile app. In the cloud layer, a fog network architecture is proposed to solve the issues of storage and data transmission. In the hospital layer, we propose a convolutional neural network-based deep learning model for COVID-19 detection based on patient’s X-ray scan images and transfer learning. The proposed model achieved promising results compared to the state-of-the art (i.e., accuracy of 97.95% and specificity of 98.85%). Our framework is a useful application, through which we expect significant effects on COVID-19 proliferation and considerable lowering in healthcare expenses.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献