Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images

Author:

Rahman Md Fashiar1ORCID,Tseng Tzu-Liang (Bill)1ORCID,Pokojovy Michael2ORCID,McCaffrey Peter3,Walser Eric3,Moen Scott3ORCID,Vo Alex3,Ho Johnny C.4ORCID

Affiliation:

1. Department of Industrial, Manufacturing and Systems Engineering, The University of Texas, El Paso, TX 79968, USA

2. Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA

3. Department of Radiology, The University of Texas Medical Branch, Galveston, TX 77550, USA

4. Department of Management and Marketing, Turner College of Business, Columbus State University, Columbus, GA 31907, USA

Abstract

The class activation map (CAM) represents the neural-network-derived region of interest, which can help clarify the mechanism of the convolutional neural network’s determination of any class of interest. In medical imaging, it can help medical practitioners diagnose diseases like COVID-19 or pneumonia by highlighting the suspicious regions in Computational Tomography (CT) or chest X-ray (CXR) film. Many contemporary deep learning techniques only focus on COVID-19 classification tasks using CXRs, while few attempt to make it explainable with a saliency map. To fill this research gap, we first propose a VGG-16-architecture-based deep learning approach in combination with image enhancement, segmentation-based region of interest (ROI) cropping, and data augmentation steps to enhance classification accuracy. Later, a multi-layer Gradient CAM (ML-Grad-CAM) algorithm is integrated to generate a class-specific saliency map for improved visualization in CXR images. We also define and calculate a Severity Assessment Index (SAI) from the saliency map to quantitatively measure infection severity. The trained model achieved an accuracy score of 96.44% for the three-class CXR classification task, i.e., COVID-19, pneumonia, and normal (healthy patients), outperforming many existing techniques in the literature. The saliency maps generated from the proposed ML-GRAD-CAM algorithm are compared with the original Gran-CAM algorithm.

Funder

National Science Foundation

U.S. Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3