Some Algorithms for Computing Short-Length Linear Convolution

Author:

Cariow Aleksandr,Paplinski Janusz P.ORCID

Abstract

In this article, we propose a set of efficient algorithmic solutions for computing short linear convolutions focused on hardware implementation in VLSI. We consider convolutions for sequences of length N= 2, 3, 4, 5, 6, 7, and 8. Hardwired units that implement these algorithms can be used as building blocks when designing VLSI -based accelerators for more complex data processing systems. The proposed algorithms are focused on fully parallel hardware implementation, but compared to the naive approach to fully parallel hardware implementation, they require from 25% to about 60% less, depending on the length N and hardware multipliers. Since the multiplier takes up a much larger area on the chip than the adder and consumes more power, the proposed algorithms are resource-efficient and energy-efficient in terms of their hardware implementation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Fast Algorithms for Signal Processing;Blahut,2010

2. Algorithms for Discrete Fourier Transform and Convolution;Tolimieri,1989

3. Number Theory in Digital Signal Processing;McClellan,1979

4. Nussbaumer, H. J., Fast Fourier Transform and Convolution Algorithms. Springer Series in Information Sciences 2. Berlin-Heidelberg-New York, Springer-Verlag-1981, X, 248 S., 34 Abb., DM 69,–. US $ 40.80. ISBN 3-540-10159-4

5. Convolution Algorithms;Burrus,1985

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3