Q-Selector-Based Prefetching Method for DRAM/NVM Hybrid Main Memory System

Author:

Kim Jeong-GeunORCID,Kim Shin-DugORCID,Yoon Su-Kyung

Abstract

This research is to design a Q-selector-based prefetching method for a dynamic random-access memory (DRAM)/ Phase-change memory (PCM)hybrid main memory system for memory-intensive big data applications generating irregular memory accessing streams. Specifically, the proposed method fully exploits the advantages of two-level hybrid memory systems, constructed as DRAM devices and non-volatile memory (NVM) devices. The Q-selector-based prefetching method is based on the Q-learning method, one of the reinforcement learning algorithms, which determines a near-optimal prefetcher for an application’s current running phase. For this, our model analyzes real-time performance status to set the criteria for the Q-learning method. We evaluate the Q-selector-based prefetching method with workloads from data mining and data-intensive benchmark applications, PARSEC-3.0 and graphBIG. Our evaluation results show that the system achieves approximately 31% performance improvement and increases the hit ratio of the DRAM-cache layer by 46% on average compared to a PCM-only main memory system. In addition, it achieves better performance results compared to the state-of-the-art prefetcher, access map pattern matching (AMPM) prefetcher, by 14.3% reduction of execution time and 12.89% of better CPI enhancement.

Funder

National Research Foundation of Korea

Jeonbuk National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3