Abstract
This research is to design a Q-selector-based prefetching method for a dynamic random-access memory (DRAM)/ Phase-change memory (PCM)hybrid main memory system for memory-intensive big data applications generating irregular memory accessing streams. Specifically, the proposed method fully exploits the advantages of two-level hybrid memory systems, constructed as DRAM devices and non-volatile memory (NVM) devices. The Q-selector-based prefetching method is based on the Q-learning method, one of the reinforcement learning algorithms, which determines a near-optimal prefetcher for an application’s current running phase. For this, our model analyzes real-time performance status to set the criteria for the Q-learning method. We evaluate the Q-selector-based prefetching method with workloads from data mining and data-intensive benchmark applications, PARSEC-3.0 and graphBIG. Our evaluation results show that the system achieves approximately 31% performance improvement and increases the hit ratio of the DRAM-cache layer by 46% on average compared to a PCM-only main memory system. In addition, it achieves better performance results compared to the state-of-the-art prefetcher, access map pattern matching (AMPM) prefetcher, by 14.3% reduction of execution time and 12.89% of better CPI enhancement.
Funder
National Research Foundation of Korea
Jeonbuk National University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献