A Prediction-Based Model for Consistent Adaptive Routing in Back-Bone Networks at Extreme Situations

Author:

Zhou QianruORCID,Pezaros DimitriosORCID

Abstract

To reduce congestion, numerous routing solutions have been proposed for backbone networks, but how to select paths that stay consistently optimal for a long time in extremely congested situations, avoiding the unnecessary path reroutings, has not yet been investigated much. To solve that issue, a model that can measure the consistency of path latency difference is needed. In this paper, we make a humble step towards a consistent differential path latency model and by predicting base on that model, a metric Path Swap Indicator (PSI) is proposed. By learning the history latency of all optional paths, PSI is able to predict the onset of an obvious and steady channel deterioration and make the decision to switch paths. The effect of PSI is evaluated from the following aspects: (1) the consistency of the path selected, by measuring the time interval between PSI changes; (2) the accuracy of the channel congestion situation prediction; and (3) the improvement of the congestion situation. Experiments were carried out on a testbed using real-life Abilene traffic datasets collected at different times and locations. Results show that the proposed PSI can stay consistent for over 1000 s on average, and more than 3000 s at the longest in our experiment, while at the same time achieving a congestion situation improvement of more than 300% on average, and more than 200% at the least. It is evident that the proposed PSI metric is able to provide a consistent channel congestion prediction with satisfiable channel improvement at the same time. The results also demonstrate how different parameter values impact the result, both in terms of prediction consistency and the congestion improvement.

Funder

Engineering and Physical Sciences Research Council

European Cooperation in Science and Technology

H2020 European Research Council

Huawei Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3