Walking the tightrope

Author:

Kandula Srikanth1,Katabi Dina1,Davie Bruce2,Charny Anna2

Affiliation:

1. MIT CSAIL

2. Cisco Systems

Abstract

Current intra-domain Traffic Engineering (TE) relies on offline methods, which use long term average traffic demands. It cannot react to realtime traffic changes caused by BGP reroutes, diurnal traffic variations, attacks, or flash crowds. Further, current TE deals with network failures by pre-computing alternative routings for a limited set of failures. It may fail to prevent congestion when unanticipated or combination failures occur, even though the network has enough capacity to handle the failure.This paper presents TeXCP, an online distributed TE protocol that balances load in realtime, responding to actual traffic demands and failures. TeXCP uses multiple paths to deliver demands from an ingress to an egress router, adaptively moving traffic from over-utilized to under-utilized paths. These adaptations are carefully designed such that, though done independently by each edge router based on local information, they balance load in the whole network without oscillations. We model TeXCP, prove the stability of the model, and show that it is easy to implement. Our extensive simulations show that, for the same traffic demands, a network using TeXCP supports the same utilization and failure resilience as a network that uses traditional offline TE, but with half or third the capacity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Load Balancing With Minimal Deviation in Switch Memories;IEEE Transactions on Network and Service Management;2023-12

2. Deep Learning Based Path Planning Using Integer Linear Programming Method to Teacher Signal;2023 33rd International Telecommunication Networks and Applications Conference;2023-11-29

3. Teal: Learning-Accelerated Optimization of WAN Traffic Engineering;Proceedings of the ACM SIGCOMM 2023 Conference;2023-09

4. Packet Reordering in the Era of 6G: Techniques, Challenges, and Applications;Electronics;2023-07-10

5. A Survey on Rerouting Techniques with P4 Programmable Data Plane Switches;Computer Networks;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3