A UAV Path Planning Method in Three-Dimensional Space Based on a Hybrid Gray Wolf Optimization Algorithm

Author:

Feng Jianxin1ORCID,Sun Chuanlin1,Zhang Jianhao1,Du Yue1,Liu Zhiguo1ORCID,Ding Yuanming1

Affiliation:

1. Communication and Network Key Laboratory, Dalian University, Dalian 116622, China

Abstract

Path planning, which is needed to obtain collision-free optimal paths in complex environments, is one key step within unmanned aerial vehicle (UAV) systems with various applications, such as agricultural production, target tracking, and environmental monitoring. A new hybrid gray wolf optimization algorithm—SSGWO—is proposed to plan paths for UAVs under three-dimensional agricultural environments in this paper. A nonlinear convergence factor based on trigonometric functions is used to balance local search and global search. A new relative-distance fitness adaptation strategy is created to increase the convergence speed of the SSGWO. Integrating the simulated annealing (SA) algorithm, an alternative position update strategy based on SA is proposed to improve the search process with diverse capabilities. Finally, a B-spline curve is introduced into a smooth path to ensure the path’s feasibility. The simulation results show that the SSGWO algorithm has better convergence accuracy and stability, and can obtain higher-quality paths in a three-dimensional environment, compared with GWO, MGWO, IGWO, and SOGWO.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3