Energy-Efficient Clustering in Wireless Sensor Networks Using Grey Wolf Optimization and Enhanced CSMA/CA

Author:

Kaddi Mohammed1ORCID,Omari Mohammed2ORCID,Salameh Khouloud2ORCID,Alnoman Ali2

Affiliation:

1. LDDI Laboratory, Mathematics and Computer Science Department, University of Adrar, Adrar 01000, Algeria

2. Computer Science and Engineering Department, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates

Abstract

Survivability is a critical concern in WSNs, heavily influenced by energy efficiency. Addressing severe energy constraints in WSNs requires solutions that meet application goals while prolonging network life. This paper presents an Energy Optimization Approach (EOAMRCL) for WSNs, integrating the Grey Wolf Optimization (GWO) for enhanced performance. EOAMRCL aims to enhance energy efficiency by selecting the optimal duty-cycle schedule, transmission power, and routing paths. The proposed approach employs a centralized strategy using a hierarchical network architecture. During the cluster formation phase, an objective function, augmented with GWO, determines the ideal cluster heads (CHs). The routing protocol then selects routes with minimal energy consumption for data transmission to CHs, using transmission power as a metric. In the transmission phase, the MAC layer forms a duty-cycle schedule based on cross-layer routing information, enabling nodes to switch between active and sleep modes according to their network allocation vectors (NAVs). This process is further optimized by an enhanced CSMA/CA mechanism, which incorporates sleep/activate modes and pairing nodes to alternate between active and sleep states. This integration reduces collisions, improves channel assessment accuracy, and lowers energy consumption, thereby enhancing overall network performance. EOAMRCL was evaluated in a MATLAB environment, demonstrating superior performance compared with EEUC, DWEHC, and CGA-GWO protocols, particularly in terms of network lifetime and energy consumption. This highlights the effectiveness of integrating GWO and the updated CSMA/CA mechanism in achieving optimal energy efficiency and network performance.

Funder

Algerian National Agency of Research and Development

Mohammed Bin Rashid Smart Learning Program, United Arab Emirates

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3