Construction of an Event Knowledge Graph Based on a Dynamic Resource Scheduling Optimization Algorithm and Semantic Graph Convolutional Neural Networks

Author:

Liu Xing12ORCID,Zhang Long12,Zheng Qiusheng12,Wei Fupeng3ORCID,Wang Kezheng4,Zhang Zheng5,Chen Ziwei12,Niu Liyue12,Liu Jizong12

Affiliation:

1. The Frontier Information Technology Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China

2. Henan Key Laboratory on Public Opinion Intelligent Analysis, Zhengzhou 450007, China

3. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

4. Lenovo Group Solution Center, Beijing 100085, China

5. School of Computer and Software, Nanyang Institute of Technology, Nanyang 473004, China

Abstract

Presently, road and traffic control construction on most university campuses cannot keep up with the growth of the universities. Campus roads are not very wide, crossings do not have lights, and there are no full-time traffic management personnel. Teachers and students are prone to forming a peak flow of people when going to and from classes. This has led to a constant stream of traffic accidents. It is critical to conduct a comprehensive analysis of this issue by utilizing voluminous data pertaining to school traffic incidents in order to safeguard the lives of faculty and students. In the case of domestic universities, fewer studies have studied knowledge graph construction methods for traffic safety incidents. In event knowledge graph construction, the reasonable release and recycling of computational resources are inefficient, and existing entity–relationship joint extraction methods are unable to deal with ternary overlapping and entity boundary ambiguity problems in relationship extraction. In response to the above problems, this paper proposes a knowledge graph construction method for university on-campus traffic safety events with improved dynamic resource scheduling algorithms and multi-layer semantic graph convolutional neural networks. The experiment’s results show that the proposed dynamic computational resource scheduling method increases GPU and CPU use by 25% and 9%. On the public dataset, the proposed data extraction model’s F1 scores for event triples increase by 1.3% on the NYT dataset and by 0.4% on the WebNLG dataset. This method can help the relevant university personnel in dealing with unexpected traffic incidents and reduce the impact on public opinion.

Funder

Songshan Laboratory Pre-research Project

Key Research Projects of Henan Higher Education Institutions

Henan Province International Science and Technology Cooperation Project

Key Scientific Research Projects of Colleges and Universities in Henan Province

Natural Science Foundation of Zhongyuan University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3