YOLOv8-CGRNet: A Lightweight Object Detection Network Leveraging Context Guidance and Deep Residual Learning

Author:

Niu Yixing1,Cheng Wansheng1,Shi Chunni1,Fan Song1

Affiliation:

1. School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China

Abstract

The growing need for effective object detection models on mobile devices makes it essential to design models that are both accurate and have fewer parameters. In this paper, we introduce a YOLOv8 Res2Net Extended Network (YOLOv8-CGRNet) approach that achieves enhanced precision under standards suitable for lightweight mobile devices. Firstly, we merge YOLOv8 with the Context GuidedNet (CGNet) and Residual Network with multiple branches (Res2Net) structures, augmenting the model’s ability to learn deep Res2Net features without adding to its complexity or computational demands. CGNet effectively captures local features and contextual surroundings, utilizing spatial dependencies and context information to improve accuracy. By reducing the number of parameters and saving on memory usage, it adheres to a ‘deep yet slim’ principle, lessening channel numbers between stages. Secondly, we explore an improved pyramid network (FPN) combination and employ the Stage Partial Spatial Pyramid Pooling Fast (SimPPFCSPC) structure to further strengthen the network’s capability in processing the FPN. Using a dynamic non-monotonic focusing mechanism (FM) gradient gain distribution strategy based on Wise-IoU (WIoU) in an anchor-free context, this method effectively manages low-quality examples. It enhances the overall performance of the detector. Thirdly, we introduce Unifying Object Detection Heads with Attention, adapting to various input scenarios and increasing the model’s flexibility. Experimental datasets include the commonly used detection datasets: VOC2007, VOC2012, and VisDrone. The experimental results demonstrate a 4.3% improvement in detection performance by the proposed framework, affirming superior performance over the original YOLOv8 model in terms of accuracy and robustness and providing insights for future practical applications.

Funder

University of Science and Technology Liaoning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Towards large-scale small object detection: Survey and benchmarks;Cheng;IEEE Trans. Pattern Anal. Mach. Intell.,2023

2. Centernet-auto: A multi-object visual detection algorithm for autonomous driving scenes based on improved centernet;Wang;IEEE Trans. Emerg. Top. Comput. Intell.,2023

3. A Deep Learning-Based Solution for Securing the Power Grid against Load Altering Threats by IoT-Enabled Devices;Jahangir;IEEE Internet Things J.,2023

4. Transformers in medical imaging: A survey;Shamshad;Med. Image Anal.,2023

5. Deep learning technology for construction machinery and robotics;You;Autom. Constr.,2023

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3