Study on Nighttime Pedestrian Trajectory-Tracking from the Perspective of Driving Blind Spots

Author:

Zhao Wei1,Ren Congcong1,Tan Ao1ORCID

Affiliation:

1. School of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China

Abstract

With the acceleration of urbanization and the growing demand for traffic safety, developing intelligent systems capable of accurately recognizing and tracking pedestrian trajectories at night or under low-light conditions has become a research focus in the field of transportation. This study aims to improve the accuracy and real-time performance of nighttime pedestrian-detection and -tracking. A method that integrates the multi-object detection algorithm YOLOP with the multi-object tracking algorithm DeepSORT is proposed. The improved YOLOP algorithm incorporates the C2f-faster structure in the Backbone and Neck sections, enhancing feature extraction capabilities. Additionally, a BiFormer attention mechanism is introduced to focus on the recognition of small-area features, the CARAFE module is added to improve shallow feature fusion, and the DyHead dynamic target-detection head is employed for comprehensive fusion. In terms of tracking, the ShuffleNetV2 lightweight module is integrated to reduce model parameters and network complexity. Experimental results demonstrate that the proposed FBCD-YOLOP model improves lane detection accuracy by 5.1%, increases the IoU metric by 0.8%, and enhances detection speed by 25 FPS compared to the baseline model. The accuracy of nighttime pedestrian-detection reached 89.6%, representing improvements of 1.3%, 0.9%, and 3.8% over the single-task YOLO v5, multi-task TDL-YOLO, and the original YOLOP models, respectively. These enhancements significantly improve the model’s detection performance in complex nighttime environments. The enhanced DeepSORT algorithm achieved an MOTA of 86.3% and an MOTP of 84.9%, with ID switch occurrences reduced to 5. Compared to the ByteTrack and StrongSORT algorithms, MOTA improved by 2.9% and 0.4%, respectively. Additionally, network parameters were reduced by 63.6%, significantly enhancing the real-time performance of nighttime pedestrian-detection and -tracking, making it highly suitable for deployment on intelligent edge computing surveillance platforms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3