Point Cloud Registration Based on Local Variation of Surface Keypoints

Author:

Zhu Juan1,Huang Zongwei1ORCID,Yue Xiaofeng1,Liu Zeyuan1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

Keypoint detection plays a pivotal role in three-dimensional computer vision, with widespread applications in improving registration precision and efficiency. However, current keypoint detection methods often suffer from poor robustness and low discriminability. In this study, a novel keypoint detection approach based on the local variation of surface (LVS) is proposed. The LVS keypoint detection method comprises three main steps. Firstly, the surface variation index for each point is calculated using the local coordinate system. Subsequently, points with a surface variation index lower than the local average are identified as initial keypoints. Lastly, the final keypoints are determined by selecting the minimum value within the neighborhood from the initial keypoints. Additionally, a sampling consensus correspondence estimation algorithm based on geometric constraints (SAC-GC) for efficient and robust estimation of optimal transformations in correspondences is proposed. By combining LVS and SAC-GC, we propose a coarse-to-fine point cloud registration algorithm. Experimental results on four public datasets demonstrate that the LVS keypoint detection algorithm offers improved repeatability and robustness, particularly when dealing with noisy, occluded, or cluttered point clouds. The proposed coarse-to-fine point cloud registration algorithm also exhibits enhanced robustness and computational efficiency.

Funder

Department of Science and Technology of Jilin province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3