10 Clock-Periods Pipelined Implementation of AES-128 Encryption-Decryption Algorithm up to 28 Gbit/s Real Throughput by Xilinx Zynq UltraScale+ MPSoC ZCU102 Platform

Author:

Visconti PaoloORCID,Capoccia Stefano,Venere Eugenio,Velázquez RamiroORCID,Fazio Roberto de

Abstract

The security of communication and computer systems is an increasingly important issue, nowadays pervading all areas of human activity (e.g., credit cards, website encryption, medical data, etc.). Furthermore, the development of high-speed and light-weight implementations of the encryption algorithms is fundamental to improve and widespread their application in low-cost, low-power and portable systems. In this scientific article, a high-speed implementation of the AES-128 algorithm is reported, developed for a short-range and high-frequency communication system, called Wireless Connector; a Xilinx ZCU102 Field Programmable Gate Array (FPGA) platform represents the core of this communication system since manages all the base-band operations, including the encryption/decryption of the data packets. Specifically, a pipelined implementation of the Advanced Encryption Standard (AES) algorithm has been developed, allowing simultaneous processing of distinct rounds on multiple successive plaintext packets for each clock period and thus obtaining higher data throughput. The proposed encryption system supports 220 MHz maximum operating frequency, ensuring encryption and decryption times both equal to only 10 clock periods. Thanks to the pipelined approach and optimized solutions for the Substitute Bytes operation, the proposed implementation can process and provide the encrypted packets each clock period, thus obtaining a maximum data throughput higher than 28 Gbit/s. Also, the simulation results demonstrate that the proposed architecture is very efficient in using hardware resources, requiring only 1631 Configurable Logic Blocks (CLBs) for the encryption block and 3464 CLBs for the decryption one.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Implementation of AES Algorithm Using Parallelized Architecture on FPGA Platform;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

2. Cloud Computing Security, Risk, and Challenges;Machine Intelligence, Big Data Analytics, and IoT in Image Processing;2023-02-10

3. Application Research of Data Encryption Algorithm in Computer Security Management;Wireless Communications and Mobile Computing;2022-07-14

4. Implementation of Speed-Efficient Key-Scheduling Process of AES for Secure Storage and Transmission of Data;Sensors;2021-12-14

5. A low-cost and highly compact FPGA-based encryption/decryption architecture for AES algorithm;IEEE Latin America Transactions;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3