Abstract
While IEEE 802.15.4 and its Time Slotted Channel Hopping (TSCH) medium access mode were developed as a wireless substitute for reliable process monitoring in industrial environments, most deployments use a single/static physical layer (PHY) configuration. Instead of limiting all links to the throughput and reliability of a single Modulation and Coding Scheme (MCS), you can dynamically re-configure the PHY of link endpoints according to the context. However, such modulation diversity causes links to coincide in time/frequency space, resulting in poor reliability if left unchecked. Nonetheless, to some level, intentional spatial overlap improves resource efficiency while partially preserving the benefits of modulation diversity. Hence, we measured the mutual interference robustness of certain Smart Utility Network (SUN) Orthogonal Frequency Division Multiplexing (OFDM) configurations, as a first step towards combining spatial re-use and modulation diversity. This paper discusses the packet reception performance of those PHY configurations in terms of Signal to Interference Ratio (SIR) and time-overlap percentage between interference and targeted parts of useful transmissions. In summary, we found SUN-OFDM O3 MCS1 and O4 MCS2 performed best. Consequently, one should consider them when developing TSCH scheduling mechanisms in the search for resource efficient ubiquitous connectivity through modulation diversity and spatial re-use.
Funder
Fonds Wetenschappelijk Onderzoek
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference41 articles.
1. IEEE Standard for Low-Rate Wireless Networks,2016
2. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer,2012
3. Digital Communications;Proakis,2008
4. Evaluating IEEE 802.15.4g SUN for Dependable Low-Power Wireless Communications In Industrial Scenarios
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献