Beacon Success Rate versus Gateway Density in Sub-GHz Sensor Networks

Author:

Can Başak1ORCID,Karaoğlu Bora1ORCID,Potta Srikar1,Zhang Franklin1,Balanuta Artur1,Gencel Muhammed Faruk1ORCID,Bhat Uttam1,Huang Johnny1ORCID,Patankar Pooja1,Makharia Shruti1,Suryanarayanan Radhakrishnan1,Kandhalu Arvind1,Krishnamurthy Vijaya Shankar Vinay Sagar1

Affiliation:

1. Amazon Lab126, 1100 Enterprise Way, Sunnyvale, CA 94089, USA

Abstract

Multiple Gateways (GWs) provide network connectivity to Internet of Things (IoT) sensors in a Wide Area Network (WAN). The End Nodes (ENs) can connect to any GW by discovering and acquiring its periodic beacons. This provides GW diversity, improving coverage area. However, simultaneous periodic beacon transmissions among nearby GWs lead to interference and collisions. In this study, the impact of such intra-network interference is analyzed to determine the maximum number of GWs that can coexist. The paper presents a new collision model that considers the combined effects of the Medium Access Control (MAC) and Physical (PHY) layers. The model takes into account the partial overlap durations and relative power of all colliding events. It also illustrates the relationship between the collisions and the resulting packet loss rates. A performance evaluation is presented using a combination of analytical and simulation methods, with the former validating the simulation results. The system models are developed from experimental data obtained from field measurements. Numerical results are provided with Gaussian Frequency Shift Keying (GFSK) modulation. This paper provides guidance on selecting GFSK modulation parameters for low bit-rate and narrow-bandwidth IoT applications. The analysis and simulation results show that larger beacon intervals and frequency hopping help in reducing beacon loss rates, at the cost of larger beacon acquisition latency. On the flip side, the gateway discovery latency reduces with increasing GW density, thanks to an abundance of beacons.

Funder

Amazon.com, Inc.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3