Posit Arithmetic Hardware Implementations with The Minimum Cost Divider and SquareRoot

Author:

Xiao Feibao,Liang FengORCID,Wu Bin,Liang Junzhe,Cheng Shuting,Zhang Guohe

Abstract

As a substitute for the IEEE 754-2008 floating-point standard, Posit, a new kind of number system for floating-point numbers, was put forward recently. Hitherto, some studies have proven that Posit is a better floating-point style than IEEE 754-2008 in some fields. However, most of these studies presented the advantages of Posit from the arithmetical aspect, but none of them suggested it had a better hardware implementation than that of IEEE 754-2008. In this paper, we propose several hardware implementations that contain the Posit adder/subtractor, multiplier, divider, and square root. Our goal is to achieve an arbitrary Posit format and exploit the minimum circuit area, which is required in embedded devices. To implement the minimum circuit area for the divider and square root, the alternating addition and subtraction method is used rather than the Newton–Raphson method. Compared with other works, the area of our divider is about 0.2×–0.7× (FPGA). Furthermore, this paper provides the synthesis results for each critical module with the Xilinx Virtex-7 FPGA VC709 platform.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference19 articles.

1. The End of Error: Unum Computing;Gustafson,2015

2. The End of (Numeric) Error

3. Slidecast: John Gustafson Explains Energy Efficient Unum Computing. Inside HPChttps://insidehpc.com/2015/03/slidecast-john-gustafson-explains-energy-efficient-unum-computing/

4. A radical approach to computation with real numbers;Gustafson;Supercomput. Front. Innov.,2016

5. Unums 2.0: An Interview with John L. Gustafson

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3