Further Improvement of Customized Vibration Generator for Machine–Human Feedbacks with the Help of Resonant Networks

Author:

Bubovich AlexanderORCID,Galkin IlyaORCID,Vorobyov MaximORCID

Abstract

Modern industrial, household and other equipment include sophisticated power mechanisms and complicated control solutions and require tighter human–machine–human interaction, forming the structures known as cyber–physical–human systems. Their significant parts are human–machine command links and machine–human feedbacks. Such systems are found in medicine, for example, in orthopedics, where they are important for operation and functional abilities of orthopedic devices—smart wheelchairs, verticalizers, prosthesis, rehabilitation units, etc. The mentioned feedbacks may be implemented based on the haptic perceptions that require vibration actuators. In orthopedics, such actuators can also be used for diagnostic purposes. This research brings forward the idea of the use of resonant operation of the driver of vibration actuator. The corresponding driver has been built and experimentally tested. It has been found that (1) the point of maximal current is actually defined by the resonant frequency, (2) change of the capacitance allows shifting of the point of maximal current output and (3) damping factors make the above-described effect less obvious. Further development of the proposed idea requires a comprehensive comparison of four-quadrant and two-quadrant schemes in this application and development of a real-time programmable capacitor pack consisting of several binary weighted capacitors and a commutating circuit, which is installable to these schemes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber-Physical Systems Modelling of the Force Feedback Control for a Robotic Surgery Tool;2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2022-12-01

2. Potential Power Management Efficiency Improvements in Desktop 3D Printers;2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON);2022-10-10

3. Review of Lathe Type 3D Printers and Their Possible Improvements;2021 IEEE 9th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE);2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3