Abstract
Personal authentication systems employing biometrics are attracting increasing attention owing to their relatively high security compared to existing authentication systems. In this study, a wearable electromyogram (EMG) system that can be worn on the forearm was developed to detect EMG signals and, subsequently, apply them for personal authentication. In previous studies, wet electrodes were attached to the skin for measuring biosignals. Wet electrodes contain adhesives and conductive gels, leading to problems such as skin rash and signal-quality deterioration in long-term measurements. The miniaturized wearable EMG system developed in this study comprised flexible dry electrodes attached to the watch strap, enabling EMG measurements without additional electrodes. In addition, for accurately classifying and applying the measured signal to the personal authentication system, an optimal algorithm for classifying the EMG signals based on a multi-class support vector machine (SVM) model was implemented. The model using cubic SVM achieved the highest personal authentication rate of 87.1%. We confirmed the possibility of implementing a wearable authentication system by measuring the EMG signal and artificial intelligence analysis algorithm presented in this study.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献