Biometric Personal Classification with Deep Learning Using EMG Signals

Author:

BİLGİN Bekir1ORCID,GÜRSOY Mehmet İsmail2ORCID,ALKAN Ahmet1ORCID

Affiliation:

1. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ

2. ADIYAMAN UNIVERSITY

Abstract

Biometric person recognition systems are becoming increasingly important due to their use in places requiring high security. Since it includes the physical and behavioral characteristics of people, the iris structure, which is a traditional person recognition system, is more secure than methods such as fingerprints or speech. In this study, a deep learning-based person classification/recognition model is proposed. The Gesture Recognition and Biometrics ElectroMyogram (GrabMyo) dataset from the open access PhysioNet database was used. With the 28-channel EMG device, 10 people were asked to make a fist movement with their hand. During the fist movement, data were recorded with the EMG device from the arm and wrist for 5 seconds with a sampling frequency of 2048. The EMD method was chosen to determine the spectral properties of EMG signals. With the EMD method, 4 IMF signal vectors were obtained from the high frequency components of the EMG signals. The classification performance effect of the feature vector is increased by using statistical methods for each IMF signal vector. Feature vectors are classified with CNN and LSTM methods from deep learning algorithms. Accuracy, Precision, Sensitivity and F-Score parameters were used to determine the performance of the developed model. An accuracy value of 95.57% was obtained in the model developed with the CNN method. In the LSTM method, the accuracy value was 93.88%. It is explained that the deep learning model proposed in this study can be effectively used as a biometric person recognition system for person recognition or classification problems with the EMG signals obtained during the fist movement. In addition, it is predicted that the proposed model can be used effectively in the design of future person recognition systems.

Publisher

Bilge International Journal of Science and Technology Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3