Improved YOLOv3 Network for Insulator Detection in Aerial Images with Diverse Background Interference

Author:

Liu ChuanyangORCID,Wu Yiquan,Liu Jingjing,Sun Zuo

Abstract

Automatic inspection of insulators from high-voltage transmission lines is of paramount importance to the safety and reliable operation of the power grid. Due to different size insulators and the complex background of aerial images, it is a difficult task to recognize insulators in aerial views. Most of the traditional image processing methods and machine learning methods cannot achieve sufficient performance for insulator detection when diverse background interference is present. In this study, a deep learning method—based on You Only Look Once (YOLO)—will be proposed, capable of detecting insulators from aerial images with complex backgrounds. Firstly, aerial images with common aerial scenes were collected by Unmanned Aerial Vehicle (UAV), and a novel insulator dataset was constructed. Secondly, to enhance feature reuse and propagation, on the basis of YOLOv3 and Dense-Blocks, the YOLOv3-dense network was utilized for insulator detection. To improve detection accuracy for different sized insulators, a structure of multiscale feature fusion was adapted to the YOLOv3-dense network. To obtain abundant semantic information of upper and lower layers, multilevel feature mapping modules were employed across the YOLOv3-dense network. Finally, the YOLOv3-dense network and compared networks were trained and tested on the testing set. The average precision of YOLOv3-dense, YOLOv3, and YOLOv2 were 94.47%, 90.31%, and 83.43%, respectively. Experimental results and analysis validate the claim that the proposed YOLOv3-dense network achieves good performance in the detection of different size insulators amid diverse background interference.

Funder

National Nature Science Founding of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3