Insulator Defect Detection Based on YOLOv5s-KE

Author:

Fang Guozhi1,An Xin2ORCID,Fang Qi3,Gao Shengpan2

Affiliation:

1. School of Mechanical and Electronic Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China

2. Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China

3. State Grid HLJ Electric Power Transmission and Transformation Engineering Co., Ltd., Harbin 150080, China

Abstract

To tackle the issue of low detection accuracy in insulator images caused by intricate backgrounds and small defect sizes, as well as the requirement for real-time detection on embedded and mobile devices, this research introduces the YOLOv5s-KE model. Integrating multiple strategies, YOLOv5s-KE aims to boost detection accuracy significantly. Initially, an enhanced anchor generation method utilizing the K-means++ algorithm is proposed to generate more appropriate anchor boxes for insulator defects. Moreover, an attention mechanism is integrated into both the backbone and neck networks to enhance the model’s capacity to focus on defect features and resist interference. To improve the detection of small defects, the EIoU loss function is implemented in place of the original CIoU loss function. In order to meet the real-time detection needs on embedded and mobile devices, the model is further refined through the integration of Ghost convolution for lightweight feature extraction and a linear transformation to reduce the computational burden of standard convolution. A channel pruning strategy is deployed to optimize the sparsely trained network, diminishing redundancy, and improving model generalization. Additionally, the CARAFE operator replaces the original upsampling operator to minimize model parameters and elevate detection speed. Experimental outcomes demonstrate that YOLOv5s-KE achieves a detection accuracy of 92.3% on the Chinese transmission line insulator dataset, marking a 5.2% enhancement over the original YOLOv5s. The streamlined version of YOLOv5s-KE achieves a detection speed of 94.3 frames per second, indicating an improvement of 30.1 frames per second compared to the original model. Model parameters are condensed to 9.6 M, resulting in a detection accuracy of 91.1%. This study underscores the precision and efficiency of the proposed approach, suggesting that the advanced strategies explored introduce novel possibilities for insulator defect detection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3