Slip Estimation and Compensation Control of Omnidirectional Wheeled Automated Guided Vehicle

Author:

Chen Pei-JarnORCID,Yang Szu-Yueh,Chen Yen-Pei,Muslikhin MuslikhinORCID,Wang Ming-Shyan

Abstract

To achieve Industry 4.0 solutions for the networking of mechatronic components in production plants, the use of Internet of Things (IoT) technology is the optimal way for goods transportation in the cyber-physical system (CPS). As a result, automated guided vehicles (AGVs) are networked to all other participants in the production system to accept and execute transport jobs. Accurately tracking the planned paths of AGVs is therefore essential. The omnidirectional mobile vehicle has shown its excellent characteristics in crowded environments and narrow aisle spaces. However, the slip problem of the omnidirectional mobile vehicle is more serious than that of the general wheeled mobile vehicle. This paper proposes a slip estimation and compensation control method for an omnidirectional Mecanum-wheeled automated guided vehicle (OMWAGV) and implements a control system. Based on the slip estimation and compensation control of the general wheeled mobile platform, a Microchip dsPIC30F6010A microcontroller-based system uses an MPU-9250 multi-axis accelerometer sensor to derive the longitudinal speed, transverse speed, and steering angle of the omnidirectional wheel platform. These data are then compared with those from the motor encoders. A linear regression with a recursive least squares (RLS) method is utilized to estimate real-time slip ratio variations of four driving wheels and conduct the corresponding compensation and control. As a result, the driving speeds of the four omnidirectional wheels are dynamically adjusted so that the OMWAGV can accurately follow the predetermined motion trajectory. The experimental results of diagonally moving and cross-walking motions without and with slip estimation and compensation control showed that, without calculating the errors occurred during travel, the distances between the original starting position to the stopping position are dramatically reduced from 1.52 m to 0.03 m and from 1.56 m to 0.03 m, respectively. The higher tracking accuracy of the proposed method verifies its effectiveness and validness.

Funder

the Ministry of Education, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3