Design and Evaluation of Open-Source Soft-Core Processors

Author:

Gazziro Mario12ORCID,Junior Jecel Mattos de Assumpção2,Junior Oswaldo Hideo Ando3ORCID,Cavallari Marco Roberto4ORCID,Carmo João Paulo2ORCID

Affiliation:

1. Information Engineering Group, Department of Engineering and Social Sciences (CECS), Federal University of ABC (UFABC), Santo André 09210-580, Brazil

2. Group of Metamaterials Microwaves and Optics (GMeta), Department of Electrical Engineering (SEL), University of São Paulo (USP), Avenida Trabalhador São-Carlense, Nr. 400, Parque Industrial Arnold Schimidt, São Carlos 13566-590, Brazil

3. Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, Brazil

4. Department of Electronics and Biomedical Engineering (DEEB), School of Electrical and Computer Engineering (FEEC), State University of Campinas (UNICAMP), Campinas 13083-852, Brazil

Abstract

The advantage of FPGAs lies in their ability to implement a fully hardware solution for interfacing with various input/output (I/O) devices. Each block can work in parallel with all the others, simplifying the satisfaction of timing constraints. However, this hardware utilization consumes FPGA resources that could otherwise be allocated to the primary project. An alternative involves employing a small “soft-core” processor to implement I/O in software. With the goal of designing and evaluating a new tiny soft-core processor optimized for FPGA resources in I/O, a novel processor named Baby8 is developed. It is an 8-bit CISC soft-core processor optimized for reduced FPGA resources, including program size for 8-bit applications. The number of instructions is not large, but any instruction can access arbitrary memory locations. The performance and resource utilization of the newly designed processor are evaluated and compared with a variety of other soft-core processors. The results demonstrate its competitive performance, achieving an average maximum clock frequency of approximately 57 MHz and a power consumption of around 2 mW. Furthermore, it conserves nearly half of the FPGA resources in implementation.

Funder

Brazilian Ministry of Science, Technology, and Innovations

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3