Lightweight Machine Learning Method for Real-Time Espresso Analysis

Author:

Choi Jintak1ORCID,Lee Seungeun1,Kang Kyungtae2ORCID,Suh Hyojoong3ORCID

Affiliation:

1. Department of Applied and Computer Science and Engineering Major in Bio Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea

2. Department of Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea

3. School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14462, Republic of Korea

Abstract

Coffee crema plays a crucial role in assessing the quality of espresso. In recent years, in response to the rising labor costs, aging population, remote security/authentication needs, civic awareness, and the growing preference for non-face-to-face interactions, robot cafes have emerged. While some people seek sentiment and premium coffee, there are also many who desire quick and affordable options. To align with the trends of this era, there is a need for lightweight artificial intelligence algorithms for easy and quick decision making, as well as monitoring the extraction process in these automated cafes. However, the application of these technologies to actual coffee machines has been limited. In this study, we propose an innovative real-time coffee crema control system that integrates lightweight machine learning algorithms. We employ the GrabCut algorithm to segment the crema region from the rest of the image and use a clustering algorithm to determine the optimal brewing conditions for each cup of espresso based on the characteristics of the crema extracted. Our results demonstrate that our approach can accurately analyze coffee crema in real time. This research proposes a promising direction by leveraging computer vision and machine learning technologies to enhance the efficiency and consistency of coffee brewing. Such an approach enables the prediction of component replacement timing in coffee machines, such as the replacement of water filters, and provides administrators with Before Service. This could lead to the development of fully automated artificial intelligence coffee making systems in the future.

Funder

MSIT (Ministry of Science and ICT), Korea

IITP

Catholic University of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3