Caffe2Unity: Immersive Visualization and Interpretation of Deep Neural Networks

Author:

Aamir AishaORCID,Tamosiunaite Minija,Wörgötter Florentin

Abstract

Deep neural networks (DNNs) dominate many tasks in the computer vision domain, but it is still difficult to understand and interpret the information contained within these networks. To gain better insight into how a network learns and operates, there is a strong need to visualize these complex structures, and this remains an important research direction. In this paper, we address the problem of how the interactive display of DNNs in a virtual reality (VR) setup can be used for general understanding and architectural assessment. We compiled a static library as a plugin for the Caffe framework in the Unity gaming engine. We used routines from this plugin to create and visualize a VR-based AlexNet architecture for an image classification task. Our layered interactive model allows the user to freely navigate back and forth within the network during visual exploration. To make the DNN model even more accessible, the user can select certain connections to understand the activity flow at a particular neuron. Our VR setup also allows users to hide the activation maps/filters or even interactively occlude certain features in an image in real-time. Furthermore, we added an interpretation module and reframed the Shapley values to give a deeper understanding of the different layers. Thus, this novel tool offers more direct access to network structures and results, and its immersive operation is especially instructive for both novices and experts in the field of DNNs.

Funder

German Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3