Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment

Author:

Alzubi Omar A.,Alzubi Jafar A.,Alazab MoutazORCID,Alrabea Adnan,Awajan Albara,Qiqieh Issa

Abstract

As a new paradigm, fog computing (FC) has several characteristics that set it apart from the cloud computing (CC) environment. Fog nodes and edge computing (EC) hosts have limited resources, exposing them to cyberattacks while processing large streams and sending them directly to the cloud. Intrusion detection systems (IDS) can be used to protect against cyberattacks in FC and EC environments, while the large-dimensional features in networking data make processing the massive amount of data difficult, causing lower intrusion detection efficiency. Feature selection is typically used to alleviate the curse of dimensionality and has no discernible effect on classification outcomes. This is the first study to present an Effective Seeker Optimization model in conjunction with a Machine Learning-Enabled Intrusion Detection System (ESOML-IDS) model for the FC and EC environments. The ESOML-IDS model primarily designs a new ESO-based feature selection (FS) approach to choose an optimal subset of features to identify the occurrence of intrusions in the FC and EC environment. We also applied a comprehensive learning particle swarm optimization (CLPSO) with Denoising Autoencoder (DAE) for the detection of intrusions. The development of the ESO algorithm for feature subset selection and the DAE algorithm for parameter optimization results in improved detection efficiency and effectiveness. The experimental results demonstrated the improved outcomes of the ESOML-IDS model over recent approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3