Classifier Performance Evaluation for Lightweight IDS Using Fog Computing in IoT Security

Author:

Khater Belal SudqiORCID,Abdul Wahab Ainuddin WahidORCID,Idris Mohd Yamani Idna,Hussain Mohammed AbdullaORCID,Ibrahim Ashraf Ahmed,Amin Mohammad Arif,Shehadeh Hisham A.

Abstract

In this article, a Host-Based Intrusion Detection System (HIDS) using a Modified Vector Space Representation (MVSR) N-gram and Multilayer Perceptron (MLP) model for securing the Internet of Things (IoT), based on lightweight techniques and using Fog Computing devices, is proposed. The Australian Defence Force Academy Linux Dataset (ADFA-LD), which contains exploits and attacks on various applications, is employed for the analysis. The proposed method is divided into the feature extraction stage, the feature selection stage, and classification modeling. To maintain the lightweight criteria, the feature extraction stage considers a combination of 1-gram and 2-gram for the system call encoding. In addition, a Sparse Matrix is used to reduce the space by keeping only the weight of the features that appear in the trace, thus ignoring the zero weights. Subsequently, Linear Correlation Coefficient (LCC) is utilized to compensate for any missing N-gram in the test data. In the feature selection stage, the Mutual Information (MI) method and Principle Component Analysis (PCA) are utilized and then compared to reduce the number of input features. Following the feature selection stage, the modeling and performance evaluation of various Machine Learning classifiers are conducted using a Raspberry Pi IoT device. Further analysis of the effect of MLP parameters, such as the number of nodes, number of features, activation, solver, and regularization parameters, is also conducted. From the simulation, it can be seen that different parameters affect the accuracy and lightweight evaluation. By using a single hidden layer and four nodes, the proposed method with MI can achieve 96% accuracy, 97% recall, 96% F1-Measure, 5% False Positive Rate (FPR), highest curve of Receiver Operating Characteristic (ROC), and 96% Area Under the Curve (AUC). It also achieved low CPU time usage of 4.404 (ms) milliseconds and low energy consumption of 8.809 (mj) millijoules.

Funder

Universiti Malaya

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference172 articles.

1. Fog computing security: a review of current applications and security solutions

2. A roadmap for security challenges in the Internet of Things

3. Research of Immunity-based Anomaly Intrusion Detection and Its Application for Security Evaluation of E-government Affair Systems;Sun;Int. J. Digit. Content Technol. Its Appl.,2012

4. Machine Learning Based Intrusion Detection Systems for IoT Applications

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3